Общество с ограниченной ответственностью «Специальное конструкторское бюро Стройприбор»

Пресс гидравлический малогабаритный

ПГМ-500МГ4А

руководство по эксплуатации КБСП.427121.015

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СЕРТИФИКАТ

об утверждении типа средств измерений Nº 49130-12

Срок действия утверждения типа до 21 декабря 2026 г.

НАИМЕНОВАНИЕ И ОБОЗНАЧЕНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Прессы гидравлические малогабаритные ПГМ-МГ4

изготовитель ООО "СКБ Стройприбор", г. Челябинск

ПРАВООБЛАДАТЕЛЬ

КОД ИДЕНТИФИКАЦИИ ПРОИЗВОДСТВА

ДОКУМЕНТ НА ПОВЕРКУ КБСП.427121.015

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Срок действия утвержденного типа средств измерений продлен приказом Федерального агентства по техническому регулированию и метрологии от 19 октября 2021 г. N 2314.

Руководитель

Подлинник электронного документа, подписанного ЭП, хранится в системе электронного документооборота Федеральное агентство по техническому регулированию и метрологии.

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат: 02B52A9200A0ACD583455C454C1E1FAD5E Кому выдан: Шалаев Антон Павлович Действителен: с 29.12.2020 до 29.12.2021

А.П.Шалаев

«03» декабря 2021 г.

СОДЕРЖАНИЕ

1 Описание и работа	5
1.1 Назначение и область применения	5
1.2 Основные технические и метрологические характеристики	5
1.3 Состав прессов	7
1.4 Устройство и работа	8
1.5 Маркировка и пломбирование	13
1.6 Упаковка	
2 Использование по назначению	
2.1 Эксплуатационные ограничения	14
2.2 Подготовка к работе	15
2.3 Использование пресса	16
2.3.1 Порядок работы в режиме «Испытание образцов»	16
2.3.2 Порядок работы в режиме «Просмотр архива»	23
2.3.3 Порядок работы в режиме «Передача данных на ПК»	24
2.3.4 Порядок работы в режиме «Коэффициенты приведения»	29
2.3.5 Порядок работы в режиме «Поверка/Калибровка»	
2.3.6 Порядок работы в режиме «Установка часов»	
3 Техническое обслуживание	
3.1 Меры безопасности	
3.2 Порядок технического обслуживания	
4 Методика поверки	
4.1 Операции поверки	35
4.2 Средства поверки	36
4.3 Требования безопасности	37
4.4 Условия поверки и подготовка к ней	37
4.5 Проведение поверки	38
4.6 Оформление результатов поверки	42
5 Хранение	42
6 Транспортирование	
7 Утилизация	
Паспорт	
Приложение А	

Руководство по эксплуатации (РЭ) включает в себя общие сведения необходимые для изучения и правильной эксплуатации прессов гидравлических малогабаритных ПГМ-МГ4. РЭ содержит описание принципа действия, технические характеристики, методы контроля и другие сведения, необходимые для нормальной эксплуатации прессов.

Эксплуатация прессов должна проводиться лицами, ознакомленными с принципами работы, конструкцией прессов и настоящим РЭ.

1 Описание и работа

1.1 Назначение и область применения

- 1.1.1 Прессы гидравлические малогабаритные ПГМ-МГ4 (далее по тексту прессы) предназначены для создания и измерения нагрузки (силы), при статических испытаниях на сжатие и изгиб контрольных образцов из бетона, а так же других строительных материалов.
- 1.1.2 Область применения строительная индустрия, научно исследовательские и строительные лаборатории.
- 1.1.3 При эксплуатации в рабочих условиях прессы устойчивы к воздействию:
 - температуры окружающего воздуха от 10 °C до 35 °C;
- относительной влажности воздуха до 80 % при 25 °C и более низких температурах без конденсации влаги;
 - атмосферного давления от 84 до 106,7 кПа.

1.2 Основные технические и метрологические характеристики

- 1.2.1 Пределы нагружений:
 - − наименьший − 5 кH;

- наибольший 500 кH;
- 1.2.2 Цена единицы наименьшего разряда 0,1 кН
- 1.2.3 Пределы допускаемой относительной погрешности в соответствии с таблицей 1.

Таблица 1

Диапазон нагружений, % от наибольшего предела нагружения	Пределы допускаемой относительной погрешности, %
от 1 до 5	± 3
св. 5 до 100	± 1

1.2.4 Высота, ширина и глубина рабочего пространства не менее указанных в таблице 2.

Таблица 2

Высота	рабочего	Глубина	рабочего	Ширина	рабочего
пространства, мм		пространства, мм		пространства, мм	
33	7	160		19	8

- 1.2.5 Диапазон регулирования скорости возрастания напряжения в образце от 0,2 до 1,0 МПа/с.
- $1.2.6~\Pi$ ределы допускаемой абсолютной погрешности поддержания заданной скорости $\pm~0.2~\mathrm{M}\Pi$ а/с.
- 1.2.7 Размеры опорных плит, не менее: 160×160 мм либо $\varnothing 212$ мм.
 - 1.2.8 Ход поршня рабочего цилиндра не менее 50 мм.
- 1.2.9 Габаритные размеры и масса прессов не более указанных в таблице 3.

Таблица 3

Модификация пресса	Габаритные размеры, мм	Масса, кг
ПГМ-500МГ4А	320×455×945	140
Пульт управления	200×50×100	0,1

- 1.2.10 Электрическое питание прессов осуществляется от сети переменного тока частотой (50±0,5) Гц, напряжение (220±22) В.
 - 1.2.11 Потребляемая мощность 300 Вт:

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

- 1.2.12 Степень защиты, обеспечиваемая оболочкой IP20.
- 1.2.13 Идентификационные данные программного обеспечения (ПО) приведены в табл. 4.

Таблица 4

Наимено- вание ПО	Иденти- фикаци- онное наимено- вание ПО	Номер версии (идентификационный номер) ПО	Цифровой идентификатор ПО (контрольная сумма исполняемого кода)	Алгоритм вычисления цифрового идентификатора ПО
Встроенное програм- мное обес- печение	PGM_EL	V1.01	A14D	CRC16
ПО ПК	ПГМ-МГ4	1.0.1	91f3f72726137f44 71edfc867f39d166	md5

- 1.2.14 Средняя наработка на отказ, не менее 5000 ч.
- 1.2.15 Средний срок службы, не менее 10 лет

1.3 Состав прессов

1.3.1 В состав прессов входит:

1	пресс	1		
2	пульт управления	1		
3	кабель USB	1		
4	сетевой кабель	1		
5	USB-флеш-накопитель с программным	1		
5	обеспечением «СКБ Стройприбор»			
6	вставка плавкая 5А, 250 В	1		
7	емкость с маслом	1		
8	приспособление для испытания образцов на изгиб	1		
O	(по спецзаказу)	1		
9	руководство по эксплуатации с методикой поверки	1		

1.3.2 Пресс поставляется заказчику в потребительской таре.

1.4 Устройство и работа

- 1.4.1 Принцип действия пресса основан на преобразовании нагрузки (силы), приложенной к испытуемому образцу, тензорезисторным датчиком в электрический сигнал, изменяющийся пропорционально этой нагрузке. Электрический сигнал регистрируется пультом управления, где обрабатывается и результаты измерений, в единицах силы, отображаются на жидкокристаллическом дисплее.
- 1.4.2 Конструктивно пресс представляет собой машину, состоящую из нагружающего устройства и силоизмерителя. Внешний вид пресса показан на рис. 1а и 1.б.
- 1.4.2.1 Нагружающее устройство состоит из силовой рамы, гидронасоса и рабочего цилиндра.

Силоизмеритель состоит из тензопреобразователя и пульта управления с дисплеем, соединяемого при помощи кабеля с тензопреобразователем и электроприводом.

1.4.2.2 Силовая рама образована основанием, четырьмя стойками и упорной траверсой.

Под основанием размещен электропривод насоса с блоком управления и гидронасос. На основании размещен масляный бак, рабочий цилиндр с поршнем и нижней опорной плитой, а так же смонтированы датчик перемещения и концевой выключатель предельного хода поршня. На упорной траверсе смонтирован силовой винт ручной подачи с верхней опорной плитой, в пазах, расположенных на упорной траверсе, установлен пульт управления. Нагружающее устройство снабжено защитным ограждением (решеткой).

На лицевой панели пресса расположены органы управления:

- тумблер включения питания;
- кнопка ПУСК включения электропривода насоса;
- кнопка СТОП;
- рукоять привода клапана сброса/подачи масла;
- индикатор работы двигателя насоса;

Пресс гидравлический малогабаритный ПГМ - 500МГ4А – регулятор скорости нагружения (потенциометр).

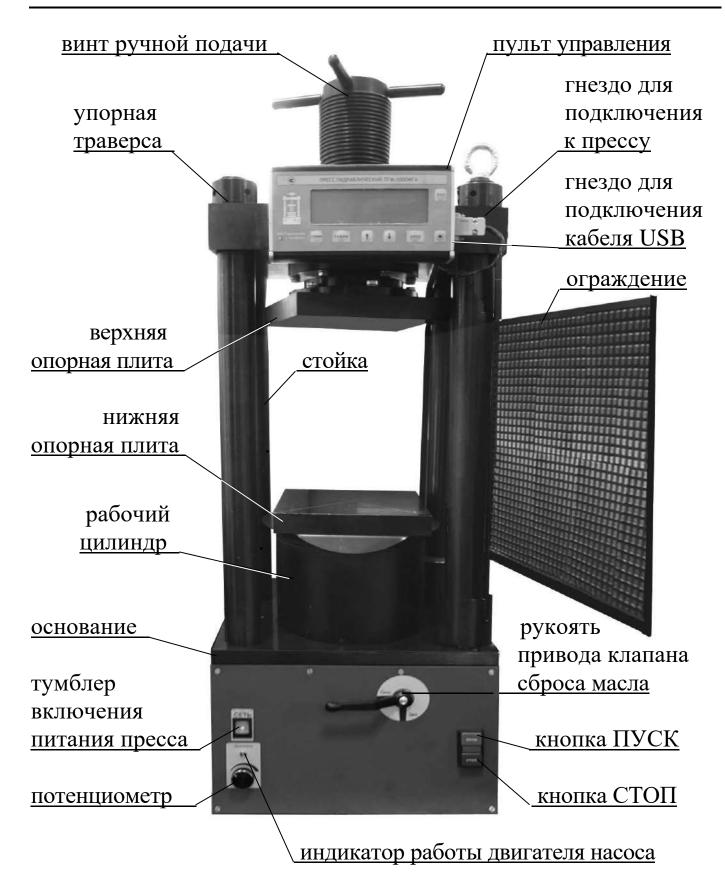
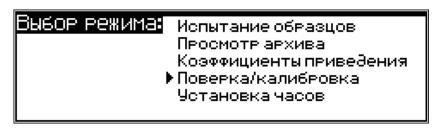


Рисунок 4.1.а – Внешний вид пресса. Вид спереди

Рисунок 4.1.б – Внешний вид пресса. Вид сзади

Примечание — Регулятор скорости нагружения используется в режиме «Поверка/калибровка».

На задней панели пресса размещены: решетка вентилятора, пробка сливного отверстия масляного бака, гнездо для подключения пресса к сети 220 В, 50 Гц, предохранитель, клемма заземления.


Пресс снабжен защитой от перегрузки, автоматически отключающей электропривод при превышении нагрузки или при достижении максимального хода поршня.

1.4.2.3 Пульт управления служит для управления процессом измерений и отображения результатов измерений. На лицевой панели пульта управления имеется жидкокристаллический дисплей и клавиатура, состоящая из семи кнопок: РЕЖИМ, ВВОД, ↑, ↓, СЕРИЯ, F, ВКЛ.

На правой боковой панели пульта управления размещены соединительные разъемы для подключения через соответствующие

кабели к прессу и персональному компьютеру (при работе в режиме передачи данных на ПК).

1.4.3 Пресс обеспечивает шесть рабочих режимов, выбор которых осуществляется в меню пульта управления. Для входа в меню необходимо нажать кнопку **РЕЖИМ**.

1.4.3.1 Режим «Испытание образцов». В данном режиме проводятся испытания образцов строительных материалов.

Для перехода в режим «Испытание образцов» из других режимов необходимо нажатием кнопки **РЕЖИМ** перейти к экрану «Выбор режима», кнопками \uparrow , \downarrow переместить курсор на пункт «Испытание образцов» и нажать кнопку **ВВОД**.

1.4.3.2 Режим «**Просмотр архива**». В данном режиме осуществляется просмотр и удаление содержимого архива. Объем архивируемой информации составляет 999 результатов измерений.

Для перехода в режим «**Просмотр архива**» из других режимов необходимо нажатием кнопки **РЕЖИМ** перейти к экрану «**Выбор режима**», кнопками \uparrow , \downarrow переместить курсор на пункт «Просмотр архива» и нажать кнопку **ВВО**Д.

Возврат в основное меню к экрану «Выбор режима» производится кнопкой РЕЖИМ.

1.4.3.3 Режим «Передача данных на ПК». В данном режиме производится передача архивированных данных на компьютер через его USB-порт.

Режим передачи данных в ПК устанавливается автоматически при подсоединении пульта к компьютеру через USB-порт.

Возврат в основное меню к экрану «Выбор режима» проис-

ходит после отсоединения пульта от ПК.

1.4.3.4 Режим «**Коэффициенты приведения**». В данном режиме производится установка масштабных коэффициентов.

Для перехода в режим «**Коэффициенты приведения**» из других режимов необходимо нажатием кнопки **РЕЖИМ** перейти к экрану «**Выбор режима**», кнопками ↑, ↓ переместить курсор на пункт «*Коэффициенты приведения*» и нажать кнопку **ВВО**Д.

Возврат в основное меню к экрану «Выбор режима» производится кнопкой РЕЖИМ.

1.4.3.5 Режим «Поверка / калибровка». В данном режиме проводится поверка/калибровка пресса с применением рабочих эталонов второго разряда по ГОСТ Р 8.663-2009.

Для перехода в режим «Поверка / калибровка» из других режимов необходимо нажатием кнопки РЕЖИМ перейти экрану «Выбор режима», кнопками ↑, ↓ переместить курсор на пункт «Поверка / калибровка» и нажать кнопку ВВОД.

Возврат в основное меню к экрану «Выбор режима» производится кнопкой РЕЖИМ.

1.4.3.6 Режим «**Установка часов**». В Режиме 6 производится установка календаря и часов реального времени.

Для перехода в режим «Установка часов» из других режимов необходимо нажатием кнопки РЕЖИМ перейти экрану «Выбор режима», кнопками \uparrow , \downarrow переместить курсор на пункт «Установка часов» и нажать кнопку ВВОД.

Возврат в основное меню к экрану «Выбор режима» производится кнопкой РЕЖИМ.

1.5 Маркировка и пломбирование

1.5.1 Маркировка

На передней панели пульта управления нанесены:

- наименование и условное обозначение пресса;

- товарный знак предприятия-изготовителя;
- знак утверждения типа.

На задней стенке основания, на табличке, нанесены:

- условное обозначение пресса;
- заводской номер, месяц и год изготовления;
- знак утверждения типа.
- 1.5.2 Пломбирование

Прессы пломбируются при положительных результатах поверки посредством нанесения клейма на пластичный материал. Место пломбирования — углубления для винта расположенные на боковой панели блока управления и в правом верхнем углу лицевой панели. Сохранность пломб в процессе эксплуатации является обязательным условием принятия рекламаций в случае отказа пресса.

1.6 Упаковка

Для обеспечения сохранности при транспортировании пресс упаковывается в ящик, изготовленный по чертежам изготовителя, категория упаковки КУ-1 по ГОСТ 23170. Эксплуатационная документация упакована в пакет, изготовленный из полиэтиленовой пленки. Маркировка упаковки производится в соответствии с ГОСТ 14192.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 В процессе работы необходимо следить, чтобы уровень масла в баке при открытом клапане сброса масла и опущенной нижней опорной плите находился на уровне риски на щупе.
- 2.1.2 Не допускается превышение максимального хода нижней опорной плиты.

- 2.1.3 Не допускается испытание хрупких материалов без защитного ограждения со стороны нахождения оператора и соседних приборов.
- 2.1.4 При подключении пресса к сети необходимо проверить зануление шин заземления трехполюсной розетки.
- 2.1.5 Перед включением в сеть необходимо надежно заземлить корпус пресса через клемму защитного заземления.
- 2.1.6 Любые перемещения, подъем и монтаж пресса должны выполняться только при снятом пульте.

2.2 Подготовка к работе

- 2.2.1 Пресс установить на жесткое и прочное основание (стол, тумба) и закрепить четырьмя болтами M12×30. Плоскость основания должна быть горизонтальна по показаниям брускового уровня, установленного в двух взаимно перпендикулярных направлениях, отклонение о горизонтальности не должно превышать 1 мм/м.
- 2.2.2 Проверить уровень масла в бачке по риске на щупе, для чего вывернуть пробку из горловины бачка и извлечь щуп. Если уровень ниже риски, необходимо долить масло до требуемого уровня, не допуская перелива масла в горловину бачка (при вворачивании пробки со щупом масло выдавливается из бачка по резьбе пробки).

Рекомендуемые марки масел: МГЕ-46B, ADDINOL HLP-46 (класс вязкости 46).

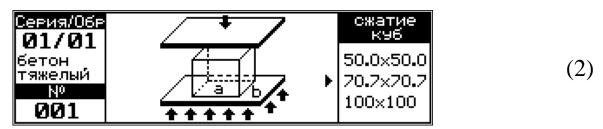
Примечания: 1 При поставке пресса в гидросистему заливается масло ADDINOL HLP-46.

- 2 Объем масла, заливаемого в гидросистему пресса, составляет примерно 4,5 л.
- 2.2.3 Установить пульт управления в пазы упорной траверсы и подключить посредством кабеля пресс к пульту, обращая внимание на положение «ключа» на соединительном разъеме.
 - 2.2.4 Заземлить пресс через клемму защитного заземления « $\stackrel{\bot}{=}$ ».

2.3 Использование пресса

2.3.1 Порядок работы в режиме «Испытание образцов»

- 2.3.1.1 Открыть клапан сброса масла поворотом рукояти привода клапана сброса масла в положение «Открыто» и, если нижняя плита была поднята, дождаться ее перемещения в исходное (нижнее) положение.
- 2.3.1.2 Испытуемый образец установить строго по оси верхней и нижней плит. Зазор между верхней плитой и образцом, устанавливаемый силовым винтом, должен составлять от 3 до 4 мм.
- 2.3.1.3 Нажатием кнопки **ВКЛ** включить пресс, после чего дисплей имеет вид, например:


2.3.1.4 Для изменения номера серии необходимо кнопкой **СЕРИЯ** возбудить мигание номера серии, кнопками ↑, ↓ установить требуемый номер и зафиксировать повторным нажатием кнопки **СЕРИЯ**, при этом курсор перемещается на вид испытуемого материала.

Примечания: 1 При отсутствии записей в архиве номер серии изменить невозможно.

2 В одну серию может быть объединено до 99 испытаний. Оператор по своему усмотрению может группировать образцы в одну серию по признаку одного класса В, по единству состава бе-

тона и т.п.

- 2.3.1.5 Кнопками \uparrow , \downarrow выбрать материал из ряда: «бетон тяжелый», «бетон легкий», «бетон ячеистый», «полистиролбетон», «раствор», «цемент», «кирпич», «асфальтобетон», «щебень» и зафиксировать кнопкой **ВВО**Д.
- 2.3.1.6 При выборе любого из первых пяти материалов курсор перемещается на форму образца. Выбор формы образца производится кнопками \uparrow , \downarrow , фиксация кнопкой **ВВО**Д. Дисплей при этом может иметь виды, например:
 - при выборе формы образца «куб»:

при этом на дисплее отображаются установки, введенные пользователем при предыдущем испытании образцов того же материала и формы.

Для изменения размеров образца нажать кнопку **ВВО**Д. Курсор перемещается на *предусмотренными ГОСТ на методы испытаний размерами образца*, например, для тяжелых бетонов: 50×50 , 70.7×70.7 или 100×100 мм.

Выбор размера образца производится кнопками ↑, ↓, фиксация — кнопкой **ВВО**Д. Затем, кнопками ↑, ↓ и **ВВО**Д, установить *действительные* размеры образца, например 97×99 мм.

- при выборе формы образца «цилиндр»:

при этом на дисплее отображаются установки, введенные пользователем при предыдущем испытании образцов того же материала и

формы.

Выбор и изменение размеров образца проводится аналогично.

Примечания: 1 Действительные размеры образца остаются в памяти пресса и автоматически устанавливаются при аналогичном испытании образцов того же материала и формы.

- 2 При испытании на сжатие кубов из ячеистого бетона необходимо дополнительно указать плотность образца.
- 3 При выборе материала «Асфальтобетон» необходимо переместить курсор на вид испытания, для чего кнопками ↑, ↓ выбрать требуемый пункт: «Сжатие» либо «Формование» и зафиксировать кнопкой **ВВО**Д.
- 2.3.1.7 После установки размеров образца курсор перемещается на значение скорости нагружения, либо скорости возрастания напряжения в образце, либо скорости перемещения активной плиты в зависимости от требований ГОСТ на методы испытаний.

Примечание — При испытании бетона и раствора на сжатие скорость возрастания напряжения в образце регулируется, и может быть установлена в диапазоне от 0,2 до 1,0 МПа/с, выбор производится кнопками \uparrow , \downarrow , и **ВВО**Д.

При испытании других материалов и иными методами скорость устанавливается автоматически и соответствует требованиям ГОСТ на методы испытаний.

При формовании образцов из асфальтобетона скорость нагружения устанавливается и поддерживается автоматически в пределах $(3.0 \pm 1.0) \ \mathrm{M\Pi a/c}.$

2.3.1.8 По окончании ввода исходных данных дисплей принимает вид:

2.3.1.9 Убедившись, что клапан сброса масла открыт, нижняя опорная плита находится в исходном положении и зазор между верхней опорной плитой и образцом установлен, нажать кнопку **ВВОД**, на дисплей выводится сообщение об автоподстройке:

2.3.1.10 Следуя указаниям на дисплее включить двигатель насоса кнопкой **ПУСК** и закрыть клапан сброса, после чего запускается процесс автоподстройки, дисплей имеет вид, например:

Во время автоподстройки нижняя опорная плита перемещается вверх на 2 мм, перемещение плиты отображается в нижнем правом углу дисплея.

Примечание — Если до запуска процесса автоподстройки нижняя опорная плита была поднята более чем на 1 мм, на дисплей выводится сообщение:

Следуя указаниям на дисплее выполнить рекомендуемые действия и повторить автоподстройку.

2.3.1.11 После окончания автоподстройки пресс переходит в

режим испытания образца, дисплей принимает вид:

Нагружение образца производится со скоростью, установленной пользователем (например, $0.6\,\mathrm{M\Pia/c}$), либо скоростью, устанавливаемой автоматически (в соответствии с требованиями ГОСТ на метод испытаний). В правом поле дисплея отображается значение перемещения нижней опорной плиты (l) до касания образца с верхней опорной плитой. После касания образца с верхней опорной плитой на дисплее отображается значение перемещения нижней опорной плиты при нагружении образца. Дисплей при этом имеет вид:

значение текущей нагрузки значение нагрузки при разрушении образца

значение перемещения плиты с момента касания образца

- 2.3.1.12 После разрушения образца значение текущей нагрузки обнуляется (P = 0), значение разрушающей нагрузки (P_{κ}) фиксируется и отображается в верхней строке дисплея.
- 2.3.1.13 После разрушения образца нажатием кнопки **СТОП** отключить привод насоса, открыть клапан сброса масла, дождаться перемещения нижней опорной плиты в исходное положение и удалить испытанный образец.

В случае, если испытания проводятся без разрушения образца, и требуемая нагрузка была достигнута, необходимо нажать

кнопку СТОП и открыть клапан сброса масла до опускания нижней плиты в исходное положение.

2.3.1.14 Для вычисления параметров, предусмотренных программой пресса и занесения результата испытания в архив, необходимо нажать кнопку **ВВОД**, дисплей при этом имеет вид, например:

2.3.1.15 Для продолжения испытаний необходимо убедиться, что клапан сброса/подачи масла открыт и нижняя опорная плита находится в исходном (нижнем) положении.

Установить образец согласно п. 2.3.1.1, кнопкой **РЕЖИМ** перейти к экрану (1), после чего повторить операции по п. 2.3.1.3 -2.3.1.7.

При испытании однотипных образцов, размеры которых отличаются незначительно, для перехода к испытаниям без повторной установки исходных данных, после установки образца между плитами пресса кнопкой **РЕЖИМ** перейти к экрану (1) и нажать кнопку **F**.

ВНИМАНИЕ:

1 При превышении максимально допустимой величины нагрузки в верхней строке дисплея высвечивается информация:

сопровождаемая прерывистым звуковым сигналом. В этом случае необходимо нажать кнопку **СТОП**, открыть клапан сброса масла и дождаться перемещения нижней опорной плиты в исходное положение, после чего нажатием кнопки **РЕЖИМ** перейти к экрану (1).

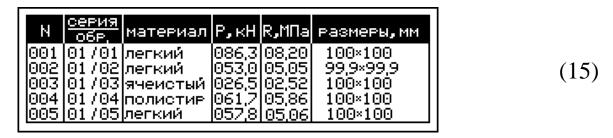
- 2 Для аварийной остановки пресса необходимо нажать кнопку **СТОП** и открыть клапан сброса масла.
 - 2.3.1.16 Испытание щебня на дробимость
- 2.3.1.16.1 Выполнить операции по п.п. 2.3.1.1...2.3.1.6, выбрав материал «**щебень**», размер цилиндра (\emptyset 75×75 мм или \emptyset 150×150 мм), при этом скорость нагружения устанавливается и поддерживается автоматически в пределах ($1,5\pm0,1$) кH/с.
- 2.3.1.16.2 Провести испытание, выполнив операции по п.п. 2.3.1.8...2.3.1.15.

Параметры испытания (перемещение и скорость нагружения в процессе испытания, размер формы, дата и время испытания) заносятся в архив нажатием кнопки **ВВОД** (прочность R не вычисляется).

- 2.3.1.17 Формование образцов из асфальтобетона
- 2.3.1.17.1 В данном режиме производится изготовление образцов цилиндрической формы из асфальтобетона и иных смесей по ГОСТ 12801, 30491, 32707 и 52129. Уплотнение образцов производится прессованием под давлением 7, 10, 20, 30 или 40 МПа.

Выполнить операции по п.п. 2.3.1.1...2.3.1.6, выбрав материал «**асфальтобетон**» и пункт «*Формование*», дисплей при этом принимает вид:

Кнопками \uparrow , \downarrow переместить курсор на требуемую величину и нажать кнопку **ВВОД**, после чего автоматически запускается процесс формования образца. По достижению усилия, соответствующего выбранному давлению, например (40 ± 0.5) МПа, нагружение прекращается и запускается таймер, отсчитывающий выдержку 180 сек (3 мин), дисплей имеет вид, например:


По истечении указанного времени выводится сообщение об окончании формования, подается звуковой сигнал и двигатель останавливается:

Параметры формования в архив не заносятся.

2.3.2 Порядок работы в режиме «Просмотр архива»

- 2.3.2.1 Просмотр содержимого архива может производиться при работе пульта подключенного к прессу.
- 2.3.2.2 Включить питание пульта и выполнить операции по п. 1.4.3.2, дисплей имеет вид, например:

2.3.2.3 Просмотр содержимого архива производится нажатием кнопок \uparrow и \downarrow .

Для просмотра дополнительной информации о скорости нагружения, масштабных коэффициентах, дате и времени испытаний необходимо нажать кнопку **ВВОД**, дополнительный экран имеет вид, например:

N 90:	01/01	материал легкий	0,95			
000 004		ячеистый полистир	0,95	0,50 MΠa/c	12/10/07 12/10/07	(1

Возврат к экрану (15) архива производится нажатием кнопки ВВОД.

- 2.3.2.4 Удаление содержимого архива производится в режиме просмотра архива.
- 2.3.2.4.1 Для удаления хранящейся в архиве информации необходимо нажать и удерживать в течение 3 секунд кнопку **ВВОД** до появления на дисплее транспаранта:

- 2.3.2.4.2 Кнопками ↑, ↓ переместить курсор на требуемый пункт и выполнить действие нажатием кнопки **ВВО**Д.
- 2.3.2.5 Возврат к основному экрану архива и далее, к экрану «**Выбор режима**», производятся кратковременными нажатиями кнопки **РЕЖИМ**.
- 2.3.2.6 Выход из режима просмотра содержимого архива про- изводится нажатием кнопки **РЕЖИМ**.

2.3.3 Порядок работы в режиме «Передача данных на ПК»

2.3.3.1 Системные требования к ПК

Для работы программы необходима система, удовлетворяющая следующим требованиям:

- операционная система Windows 95, 98, 98SE, 2000, ME, XP, 7, 8, 10 © Microsoft Corp;
 - один свободный USB-порт.
 - 2.3.3.2 Назначение, установка и возможности программы

2.3.3.2.1 Назначение программы

Программа для передачи данных предназначена для работы совместно с прессами типа ПГМ-МГ4, поставляемых ООО «СКБ Стройприбор». Программа позволяет передавать данные, записанные в архив пресса, на компьютер.

2.3.3.2.2 Установка программы

Для установки программы необходимо выполнить следующие действия:

- подсоединить USB-флеш-накопитель с программным обеспечением к ПК;
 - открыть папку «Programs» на накопителе;
 - найти и открыть папку «ПГМ-МГ4»;
 - начать установку, запустив файл Install.exe.

После загрузки нажать кнопку «Извлечь». По завершению установки программа будет доступна в меню «Пуск» — «Программы» — «Стройприбор» — «Прием данных».

- 2.3.3.2.3 Возможности программы:
- просмотр данных и занесение служебной информации в поле «Примечание» для каждого измерения;
 - сортировка по любому столбцу таблицы;
 - распечатка отчетов;
- дополнение таблиц из памяти пресса (критерий: дата последней записи в таблице);
 - экспорт отчетов в Excel.
 - 2.3.3.3 Настройка USB-соединения
- 2.3.3.3.1 Для настройки USB-соединения необходимо подключить пресс к компьютеру через USB-порт. Установить драйвер USB, который поставляется вместе с программой связи.
 - 2.3.3.2 Автоматическая установка драйвера:
- 2.3.3.3.3 После того как ОС Windows обнаружила новое устройство, в мастере установки драйверов (см. рис 2), необходимо указать папку с USB драйвером (X:/Programs/USB driver/) и нажать кнопку «Далее» (см. рис 3).

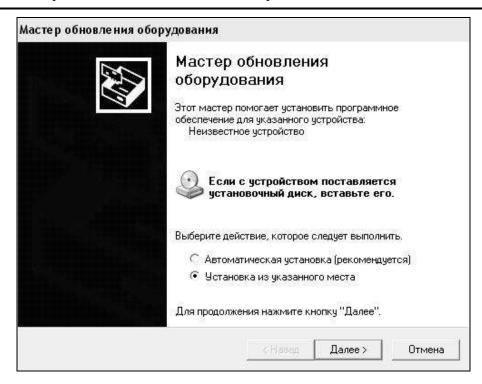


Рисунок 2 - Окно мастера обновления оборудования

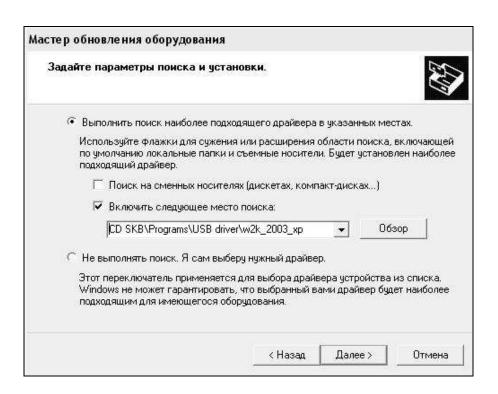


Рисунок 3 - Окно выбора драйвера для установки

2.3.3.4 Ручная установка USB драйвера:

— подсоединить USB-флеш-накопитель с программным обеспечением к ПК;

- открыть папку «Programs» на накопителе;
 - найти и открыть папку «USB driver»;
- нажать правой клавишей мыши на файле FTDIBUS.INF в выпадающем меню выбрать пункт «Установить» (см. рис 4);
- нажать правой клавишей мыши на файле FTDIPORT.INF в выпадающем меню выбрать пункт «Установить»;
 - перезагрузить OC Windows.
 - 2.3.3.4 Подключение пульта управления к ПК
- 2.3.3.4.1 Отключить пульт, отсоединить разъем и снять пульт с пресса.

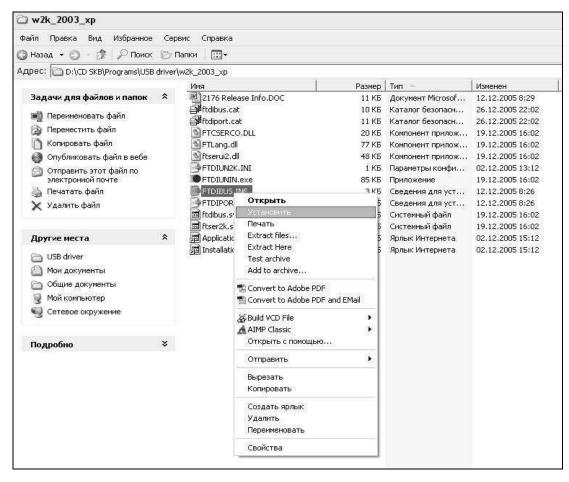


Рисунок 4 - Окно ручной установки драйвера

2.3.3.4.2 Установить пульт рядом с компьютером. Для передачи данных используется стандартный USB-порт. Для подключения необходим свободный USB-порт. Подсоединить кабель, поставляемый в комплекте с прессом, к компьютеру, второй конец

подсоединить к включенному пульту. Дисплей имеет вид:

Работа с ПК передача данных... (18)

Примечание: Питание пульта при подключении к компьютеру осуществляется по USB-кабелю.

2.3.3.5 Прием данных с пресса

- 2.3.3.5.1 Включить компьютер и запустить программу «Пуск» «Программы» «Стройприбор» «ПГМ-МГ4».
- 2.3.3.5.2 По окончании процесса определения пресса компьютером необходимо войти в раздел меню «Файл» и активировать строку «Считать архив», щелкнув по ней левой кнопкой мыши. Откроется окно сохранения файла, укажите имя файла и нажмите кнопку «Ок». В открывшемся окне нажмите «Принять данные». На экране в табличном виде отобразятся данные, считанные из архива пресса.
- 2.3.3.5.3 Для редактирования ранее сохраненных данных необходимо войти в раздел меню «Файл» и активировать строку «Открыть», щелкнув по ней левой кнопкой мыши. На экране отобразится окно выбора файла, выберете нужный файл и нажмите кнопку «Ок».
- 2.3.3.5.4 Программа позволяет заполнить таблицу необходимыми данными методом простого перетаскивания результатов (строк), с нажатой и удерживаемой левой кнопкой мыши, из таблицы «Прием данных» в «Таблицу 1».

Теперь можно:

- удалить ненужные данные;
- добавить примечание;
- экспортировать в Excel;
- распечатать отчет.
- 2.3.3.5.5 Подробное описание работы с программой находит-

ся в файле справки «Пуск» — «Программы» — «Стройприбор» — «Помощь — ПГМ-МГ4».

- 2.3.3.5.6 Если во время передачи данных произошел сбой, на экране ПК появляется сообщение: «Устройство не подключено, повторите попытку». После чего необходимо проверить подключение пресса, целостность кабеля и работоспособность USB-порта компьютера, к которому подключен пульт и повторить попытку, нажав кнопку «Считать данные».
- 2.3.3.6 Для продолжения испытаний отключить пульт, отсоединить его от ПК и подключить к прессу.

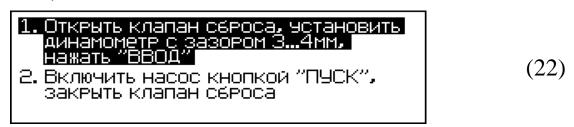
2.3.4 Порядок работы в режиме «Коэффициенты приведения»

2.3.4.1 Выполнить операции по п.1.4.3.4, дисплей имеет вид:

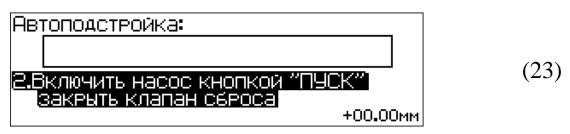
Кнопками ↑, ↓ переместить мигающее поле на требуемый пункт, например «кубы», и нажать кнопку **ВВО**Д. Дисплей имеет вид:

ребро	70.7	100	ячеистый бетон 70.7		
куба,мм)	100	∛<400кг	∛≽400кг	
Ö	▶ 0.85	0.95	1.00	0.90	(20)
ребро	150	200	ячеистый	бетон 100	(20)
куба,мм	1		∛<400кг	∛≽400кг	
O.	1.00	1.05	1.00	0.95	

- 2.3.4.2 При необходимости изменения коэффициентов, кнопками ↑, ↓ переместить курсор на требуемый пункт, кнопкой **ВВО**Д возбудить его мигание, кнопками ↑, ↓ изменить значение коэффициента и зафиксировать кнопкой **ВВО**Д.
- 2.3.4.3 Возврат к основному экрану «**Выбор режима**» производится нажатием кнопки **РЕЖИМ**.
 - 2.3.4.4 При выборе пункта «цилиндры» дисплей соответ-


ственно имеет вид:

h/d	0.85-	0.95-	1.05-	1.15-	1.25-	1.35-
	0.94	1.04	1.14	1.24	1.34	1.44
ŋ,	▶ 0.96	1.00	1.04	1.08	1.10	1.12
الم	1.45-	1.55-	1.65-	1.75-	1.85-	1.95-
	1.54	1.64	1.74	1.84	1.94	2.00
ŋ,	1.13	1.14	1.16	1.18	1.19	1.20


Изменение коэффициентов производится аналогично.

2.3.5 Порядок работы в режиме «Поверка/Калибровка»

- 2.3.5.1 К работе в данном режиме допускается только поверитель аттестованный на право поверки прессов, что обусловлено возможностью повреждения данных предыдущей калибровки пресса и может привести к погрешности измерений.
- 2.3.5.2 Войти в режим поверки/калибровки, выполнив операции по п. 1.4.3.4, дисплей имеет вид:

- 2.3.5.3 Динамометр установить строго по оси верхней и нижней опорных плит. Винтом ручной подачи установить зазор между верхней опорной плитой и динамометром от 3 до 4 мм.
- 2.3.5.4 Убедившись, что клапан сброса масла открыт, нижняя опорная плита находится в исходном положении и зазор между верхней опорной плитой и динамометром установлен, нажать кнопку **ВВОД**, на дисплей выводится сообщение об автоподстройке:

Следуя указаниям на дисплее включить двигатель насоса кнопкой **ПУСК**, и закрыть клапан сброса, после чего запускается процесс автоподстройки.

Во время автоподстройки нижняя опорная плита перемещается вверх на 2 мм, перемещение плиты отображается в нижнем правом углу дисплея.

Ручку потенциометра повернуть по часовой стрелке до упора, индикатор работы двигателя должен светиться.

Примечания: 1 В режиме «Поверка/ калибровка» скорость нагружения пресса регулируется потенциометром.

2 При повороте потенциометра против часовой стрелки до упора (индикатор работы двигателя гаснет) происходит полная остановка двигателя пресса.

После окончания автоподстройки пресс переходит в режим «Поверка/калибровка», дисплей имеет вид:

текущее значение нагрузки значение перемещения плиты

+0000.09мВ − +0000.00кН +003.86мм

▶ 1. +0000
2. +0078
3. +0192
4. +0372

P = +0000.00 кН 0050.0
0050.0
0060.0
5. +0744.3 −0020.0 10. +2512.2 −0070.0

2.3.5.5 Поворачивая ручку потенциометра против часовой стрелки, уменьшить скорость нагружения до величины достаточной, чтобы наблюдать за показаниями динамометра и пресса.

С равномерной скоростью произвести три ряда нагружений динамометра (начиная с наименьшего значения), содержащих не менее пяти ступеней каждый, равномерно распределенных в нормированном диапазоне нагружения пресса. На каждой ступени производить отсчет показаний пресса при достижении контролируемой ступени по показаниям динамометра.

2.3.5.6 Если погрешность пресса в какой либо точке диапазона превышает допустимую необходимо нажатием кнопки **СЕРИЯ** перейти к экрану (25) и провести корректировку градуировочной

характеристики в данной точке.

текущее значение сигнала U соответствующее значение <u>с тензодатчика</u> нагрузки по показаниям пресса

+0000.05mB - +0000.01kH	+002.48мм
▶ 1.+0000.0 -0000.0	6.+0338.8-0050.0
2.+0015.2-0002.0	7.+0667.7-0100.0
3.+0036.8-0005.0	8.+0995.4-0150.0
4.+0071.9-0010.0	9.+1323.8-0200.0
5.+0138.9-0020.0	<u> 10.+1650.1-0250.0</u>

таблица градуи-_ровочной харак __теристики (25)

На дисплее отображается градуировочная характеристика пресса, состоящая из 20 значений сигнала (U, мВ) с тензодатчика и соответствующих им действительных значений нагрузки (P, кН). В верхней строке дисплея отображается текущее значение сигнала с тензодатчика и соответствующее ему значение нагрузки по показаниям пресса, а так же значение перемещения нижней опорной плиты.

Для корректировки градуировочной характеристики необходимо кнопками ↑, ↓ перевести курсор ► на точку, которую необходимо скорректировать, и изменить значение сигнала с тензодатчика, для чего:

- нажать кнопку **BBO**Д, затем кнопками ↑, ↓ установить новое значение сигнала с тензодатчика (отображается в верхней строке дисплея), соответствующее действительному значению нагрузки в данной точке.
 - зафиксировать результат, нажав дважды кнопку ВВОД.
- 2.3.5.7 Продолжив нагружение, скорректировать градуировочную характеристику в остальных точках, если это необходимо.
 - 2.3.5.8 Повторить поверку пресса.

Примечания: 1 Если в процессе нагружения динамометра произошло превышение нагрузки на какой-либо ступени нагружения, дисплей примет вид:

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

В этом случае необходимо нажать кнопку СТОП, открыть клапан сброса масла и дождаться перемещения нижней опорной плиты в исходное положение, после чего повторить операции по п.п. 2.3.5.3...2.3.5.4.

2 При необходимости возврата заводских установок (если в процессе поверки/калибровки были введены ошибочные данные) необходимо в режиме «Поверка/калибровка» нажать кнопку **F**, дисплей при этом имеет вид:

При нажатии кнопки ↑ дисплей имеет вид:

При нажатии кнопки ↓ пресс возвращается в режим «Повер-ка/калибровка».

Для возврата в основное меню нажать кнопку РЕЖИМ.

2.3.6 Порядок работы в режиме «Установка часов»

2.3.6.1 Выполнить операции по п. 1.4.3.6, дисплей при этом имеет вид, например:

Установка календаря: 12/10/2007 15:24:49

- 2.3.6.2 При необходимости изменения установок необходимо нажатием кнопки **BBO**Д возбудить мигание числа, кнопками ↑, ↓ внести корректировку и зафиксировать кнопкой **BBO**Д. Далее, по миганию активного параметра, аналогично установить месяц, год, часы, минуты и секунды. Установленные дата и время сохраняются в программном устройстве пресса не менее трех лет, после чего батарея CR-2032 должна быть заменена в условиях изготовителя.
- 2.3.6.3 Возврат пресса в основное меню к экрану «Выбор режима» производится нажатием кнопки РЕЖИМ.

3 Техническое обслуживание

3.1 Меры безопасности

- 3.1.1 К работе с прессом допускаются лица, прошедшие инструктаж по технике безопасности при механических испытаниях строительных материалов.
- 3.1.2 Подъем и монтаж пресса в проектное положение производится с применением грузоподъемных механизмов. Стропы должны быть заведены под упорную траверсу.
- 3.1.3 Не реже одного раза в год необходимо проверять срабатывание защиты от перегрузки путем нагружения стальной болванки сечением не менее 100 см².

3.2 Порядок технического обслуживания

- 3.2.1 Техническое обслуживание пресса включает:
- 3.2.1.1 Проверку срабатывания защиты от перегрузок;

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

- 3.2.1.2 Текущий ремонт в случае неисправности в цепях электропривода и насоса, обнаружения протечек масла, неисправности силоизмерителя;
- 3.2.1.3 Повторную калибровку в случае ремонта силоизмерителя.
 - 3.2.1.4 Долив масла, если его уровень ниже риски на щупе.
- 3.2.1.5 Замену масла в гидравлической системе следует производить через 500 часов непрерывной работы пресса, либо один раз в два года.

Для замены масла необходимо:

- отвернуть и снять пробку заливной горловины бака;
- установить емкость под сливное отверстие, отвернуть пробку и слить отработанное масло;
- завернуть пробку сливного отверстия и через воронку залить ок. 4,5 л масла в заливную горловину;
 - завернуть пробку заливной горловины.
- 3.2.1.6 Обслуживание пресса по п.п. 3.2.1.1, 3.2.1.4 и 3.2.1.5 может выполняться потребителем, обслуживание по остальным пунктам только на предприятии изготовителе.

4 Методика поверки

Настоящая методика поверки разработана в соответствии с РМГ 51-2002 «Документы на методики поверки. Основные положения» и устанавливает методику первичной и периодической поверки прессов. До ввода в эксплуатацию, а так же после ремонта прессы подлежат первичной, а в процессе эксплуатации периодической поверке.

Интервал между поверками 1 год.

4.1 Операции поверки

4.1.1 При проведении поверки должны быть выполнены сле-

дующие операции:

Наименование операции	Номер	Проведение операции при		
	пункта методики	_	периодической	
		поверке	поверке	
Внешний осмотр	4.5.1	+	+	
Проверка сопротивления	4.5.2	+	+	
электрической изоляции		·	·	
Опробование	4.5.3	+	+	
Определение наибольшего				
и наименьшего предела	4.5.4	+	+	
нагружения и относитель-	7.5.4		'	
ной погрешности пресса				
Проверка правильности				
расчета пультом управле-	4.5.5	+	_	
ния прочности образца				
Определение диапазона ре-				
гулирования скорости воз-				
растания напряжения в об-	4.5.6	+	_	
разце и погрешности под-	4.5.0	'		
держания установленной				
скорости				
Проверка соответствия	4.5.7	+	+	
программного обеспечения	T.J. /	I ⁻	I	

4.1.2 Если при проведении той или иной операции получен отрицательный результат, дальнейшую поверку прекращают, а пресс бракуют.

4.2 Средства поверки

4.2.1 При проведении поверки применяют средства, указанные в таблице 1.

4.2.2 Допускается при поверке пресса применение средств поверки не приведенных в таблице 1, но обеспечивающие определение метрологических характеристик с требуемой точностью.

Таблица 1

Номер пункта методики	Наименование и тип средства поверки; обозначение нормативного документа, регламентирующего технические требования, и (или) метрологические и основные технические характеристики средства поверки
4.5.4	Динамометры электронные сжатия с диапазоном из-
4.5.5 4.5.6	мерений от 0,05 кН до 2 МН, предел допускаемых значений доверительных границ относительной по-
4.5.0	грешности при p=0,95 0,24 % по ГОСТ Р 8.663-2009
4.5.2	Мегомметр ЭСО202/2Г ГОСТ 22261-94, диапазон измерений от 0 до 10000 Мом, выходное напряжение на зажимах 500 В; 1000 В; 2500 В; КТ 15
4.5.6	Секундомер механический СОС пр 26-2 60 мин, 60 с

4.3 Требования безопасности

4.3.1 При проведении поверки пресса к работе допускаются лица, прошедшие инструктаж по технике безопасности при работе с электроустановками напряжением до 1000 В.

При проведении поверки должны соблюдаться требования электробезопасности по ГОСТ 12.3.019, ГОСТ 12.2.007.0.

4.4 Условия поверки и подготовка к ней

- 4.4.1 При проведении поверки должны быть соблюдены следующие условия:
 - температура окружающего воздуха, °C

 20 ± 5

- относительная влажность, %

 65 ± 15

Изменение температуры за время поверки не должно быть более 3 °C.

- 4.4.2 Время выдержки распакованных прессов в лабораторном помещении в условиях по п.4.4.1 должно быть не менее четырех часов.
- 4.4.3 Пресс устанавливают по уровню так, чтобы нижняя опорная плита была в горизонтальном положении. Отклонение от горизонтальности не должно превышать 0,6 мм/м.

4.5 Проведение поверки

4.5.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие следующим требованиям:

- наличие клейма в месте, делающем, невозможным вскрытие пульта управления пресса без нарушения клейма;
- отсутствие механических повреждений, которые могут повлиять на работоспособность пресса;
- лакокрасочные покрытия не имеют дефектов, ухудшающих внешний вид пресса;
- на нижней опорной плите нанесены риски или пресс снабжен регулирующими упорами для центрирования образцов;
 - надежность крепления органов управления и коммутации;
- наличие и сохранность маркировки и комплектующих изделий согласно комплекту поставки.

4.5.2 Проверка сопротивления электрической изоляции

Электрическое сопротивление изоляции проверяют между входными цепями питания и клеммами заземления пресса и между собой с помощью мегомметра с номинальным напряжением 1000 В. Сопротивление изоляции должно быть не менее 20 МОм.

Если требования пункта 4.5.2 не выполняются, пресс признают непригодным к применению, дальнейшие операции поверки не проводят.

4.5.3 Опробование

При опробовании проверяют:

- обеспечение нагружающим устройством равномерного без рывков приложения силы;
- автоматическое выключение нагружающего устройства пресса при нагрузке, превышающей значение верхнего предела на 5 %;
- автоматическое выключение механизма передвижения активной плиты в крайних положениях.

Для проверки правильности работы пресса динамометр устанавливают в рабочем пространстве пресса и проводят предварительное нагружение. Нагружают динамометр силой P_{max} , равной значению наибольшего предела нагружения пресса с последующим разгружением при резком снятии нагрузки. В процессе опробования не должно наблюдаться утечки масла через уплотнения и соединения трубопроводов.

Выдерживают динамометр под действием силы, равной наибольшему пределу нагружения P_{max} , в течение 5 мин. Или осуществляют нагружение динамометра до P_{max} три раза.

В процессе выдержки или последовательного повторного нагружения показания динамометра и пресса не должны иметь устойчивых тенденций к возрастанию или убыванию. В противном случае количество циклов увеличивают. При сохранении обнаруженной тенденции после десяти нагружений пресс признают непригодным к применению, дальнейшие операции поверки не проводят.

- 4.5.4 Определение наибольшего и наименьшего предела нагружения и относительной погрешности пресса
- 4.5.4.1 На нижней опорной плите устанавливают динамометр, соответствующий предельной нагрузке. При этом должна быть обеспечена центричность установки динамометра. При поднятом на масляной подушке поршне проводят предварительное обжатие динамометра нагрузкой, равной наибольшей предельной нагрузке пресса, и выдерживают динамометр под этой нагрузкой не менее 5 мин.
- 4.5.4.2 Проводят три ряда нагружений динамометра содержащих не менее пяти ступеней, равномерно распределенных в нормированном диапазоне нагружений пресса. В это число долж-

ны входить нижний и верхний пределы нагружения. На каждой ступени снимают показания пресса (P_{usm}) , при достижении контролируемой ступени по показаниям динамометра (P_{∂}) . Результаты измерений заносят в протокол.

4.5.4.3 Относительную погрешность пресса на каждой ступени вычисляют по формуле:

$$\delta = \frac{\overline{P}_{\scriptscriptstyle \mathcal{U}^{3M.i}} - P_{\scriptscriptstyle \partial.i}}{P_{\scriptscriptstyle \partial.i}} \cdot 100\%$$
 , где (4.1)

 $P_{u_{3M}.i}$ — среднее арифметическое значение нагрузки из трех результатов нагружения на i-той ступени, по показаниям пресса, кH;

 $P_{\partial i}$ — значение нагрузки на і-той ступени, по показаниям динамометра, кH.

Пресс считают выдержавшим поверку, если значения наибольшего и наименьшего пределов нагружения соответствуют нормированным значениям, а относительная погрешность не превышает допустимого значения во всем нормированном диапазоне.

4.5.5 Проверка правильности расчета пультом управления прочности образца

Для проверки правильности расчета пультом управления прочности образца:

- вводят площадь опорной поверхности имитируемого образца и масштабный коэффициент α;
- увеличивают нагрузку на динамометр, начиная с наименьшего предела нагружения;
- останавливают нагружение при достижении 90 % наибольшего предела нагружения, фиксируя по динамометру максимальное достигнутое значение нагрузки $P_{\partial \max}$, и индицируемые пультом управления значения прочности R, и максимальной нагрузки P_k .

Прочность рассчитывают по формуле

$$R = \frac{P_{o \max}}{A} \cdot 1000 \cdot \alpha , \text{ где}$$
 (4.2)

- $P_{\partial \max}$ максимальное значение нагрузки по показаниям динамометра при остановке нагружения, кH;
- α коэффициент для приведения прочности бетона к прочности бетона в образцах базового размера и формы;
- A заданная площадь опорной поверхности имитируемого образца, мм 2 .

Значения прочности индицируемое пультом управления не должно отличаться от расчетного значения более чем на 0,2 %.

4.5.6 Проверка скорости возрастания напряжения в образце и абсолютной погрешности поддержания заданной скорости

Проверку проводят в двух крайних точках диапазона регулирования скорости.

4.5.6.1 На пульте управления пресса необходимо установить параметры имитируемого образца: вид испытываемого материала — «бетон тяжелый»; форма образца — «куб»; размеры образца — «а = 100 мм, b = 100 мм».

Выбрать значение скорости — 0,2 МПа/с. На активной опорной плите устанавливают динамометр и нагружают его до 90 % наибольшего предела нагружения, фиксируя при этом секундомером время нагружения, после чего фиксируют показания пресса (P, κH).

Рассчитывают действительную скорость возрастания напряжения в образце $(V_{\text{д}}, M\Pi a/c)$ по формуле:

$$V_{o} = \frac{P}{A \cdot t} \cdot 1000 \cdot \alpha$$
 , где (4.3)

t – время нагружения, с;

- P_{-} значение нагрузки по показаниям динамометра, кH;
- α коэффициент для приведения прочности бетона к прочности бетона в образцах базового размера и формы;
- A- заданная площадь опорной поверхности имитируемого образца, мм 2 .

Повторить операции по п. 4.5.6.1, выбрав значение скорости $1,0~\mathrm{M\Pi a/c}.$

Абсолютную погрешность поддержания заданной скорости рассчитывают по формуле:

$$\Delta_{v} = V_{o} - V_{s}, \Gamma \Pi e \tag{4.4}$$

 V_{∂} — действительная скорость возрастания напряжения в образце, МПа/с;

 V_3 — заданная скорость возрастания напряжения в образце, МПа/с.

4.5.7 Проверка соответствия программного обеспечения

Нажать и удерживать кнопку **РЕЖИМ** одновременно включить пульт управления кнопкой **ВКЛ**. На дисплее отобразится идентификационное наименование программного обеспечения – PGM_EL, идентификационный номер версии ПО – V1.01, информация о цифровом идентификаторе (контрольной сумме исполняемого кода) – A14D, алгоритм вычисления цифрового идентификатора программного обеспечения – CRC16, подтверждающие соответствие встроенного программного обеспечения.

4.6 Оформление результатов поверки

- 4.6.1 При положительных результатах поверки выдают свидетельство о поверке, с нанесением клейма на пластичный материал в месте, указанном в п. 1.5.2, в соответствии с ПР 50.2.007.
- 4.6.2. При отрицательных результатах поверки пресс к применению не допускают, свидетельство о поверке аннулируют, оттиск клейма гасят, выдают извещение о непригодности с указанием причин в соответствии с требованиями ПР 50.2.006.

5 Хранение

5.1 Упакованные прессы должны храниться в закрытых сухих вентилируемых помещениях в не распакованном виде. Условия хранения в части воздействия климатических факторов должны соответствовать группе условий 2 (С) по ГОСТ 15150.

Условия хранения без упаковки – 1Л по ГОСТ 15150.

- 5.2 В воздухе помещения для хранения прессов не должно присутствовать агрессивных примесей (паров кислот, щелочей).
- 5.3 Срок хранения прессов в потребительской таре без переконсервации не более одного года.

6 Транспортирование

- 6.1 Допускается транспортирование прессов в транспортной таре всеми видами транспорта, в том числе в отапливаемых герметизированных отсеках самолетов без ограничения расстояния. Условия транспортирования в части воздействия климатических факторов должны соответствовать группе 2 С по ГОСТ 15150.
- 6.2 При транспортировании прессов должна быть предусмотрена защита от попадания пыли и атмосферных осадков.

7 Утилизация

Прессы не содержат в своем составе опасных или ядовитых веществ, способных нанести вред здоровью человека или окружающей среде и не представляет опасности для жизни, здоровья людей и окружающей среды по окончании срока службы. В этой связи утилизация прессов может производиться по правилам утилизации общепромышленных отходов.

Паспорт Пресс гидравлический малогабаритный ПГМ-500МГ4А

1 Общие сведения об изделии

- 1.1 Прессы гидравлические малогабаритные ПГМ-МГ4 (далее по тексту прессы) предназначены для создания и измерения нагрузки (силы), при статических испытаниях на сжатие и изгиб контрольных образцов из бетона, а так же других строительных материалов.
- 1.2 Область применения строительная индустрия, научно исследовательские и строительные лаборатории.
- 1.3 При эксплуатации в рабочих условиях прессы устойчивы к воздействию:
 - температуры окружающего воздуха от 10 °C до 35 °C;
- -относительной влажности воздуха до 80 % при 25 °C и более низких температурах без конденсации влаги;
 - атмосферного давления от 84 до 106,7 кПа.

2 Основные технические и метрологические характеристики

- 2.1 Пределы нагружений:
 - наименьший 5 кH;
 - наибольший 500 кH;
- 2.2 Цена единицы наименьшего разряда 0,1 кН
- 2.3 Пределы допускаемой относительной погрешности в соответствии с таблицей 1.

Таблица 1

Диапазон нагружений, % от	Пределы допускаемой отно-
наибольшего предела нагружения	сительной погрешности, %
от 1 до 5	±3
св. 5 до 100	± 1

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

2.4 Высота, ширина и глубина рабочего пространства не менее указанных в таблице 2.

Таблица 2

Высота	рабочего	Глубина	рабочего	Ширина	рабочего
пространства, мм		пространства, мм		пространства, мм	
337		160		198	

- 2.5 Диапазон регулирования скорости возрастания напряжения в образце от 0,2 до 1,0 МПа/с.
- $2.6~\Pi$ ределы допускаемой абсолютной погрешности поддержания заданной скорости $\pm~0.2~M\Pi$ а/с.
- 2.7 Размеры опорных плит, не менее: 160×160 мм либо $\varnothing 212$ мм.
 - 2.8 Ход поршня рабочего цилиндра не менее 50 мм.
- 2.9 Габаритные размеры и масса прессов не более указанных в таблице 3.

Таблица 3

Модификация пресса	Габаритные размеры, мм	Масса, кг
ПГМ-500МГ4А	320×455×945	140
Пульт управления	200×50×100	0,1

- 2.10 Электрическое питание прессов осуществляется от сети переменного тока частотой (50±0,5) Гц, напряжение (220±22) В.
 - 2.11 Потребляемая мощность 300 Вт:
 - 2.12 Степень защиты, обеспечиваемая оболочкой IP20.
- 2.13 Идентификационные данные программного обеспечения (ПО) приведены в таблице 4.
 - 1.2.14 Средняя наработка на отказ, не менее 5000 ч.
 - 1.2.15 Средний срок службы, не менее 10 лет

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

Таблица 4

				Алгоритм
	Иденти-	Номер вер-	Цифровой иден-	вычисле-
Наимено-	фикаци-	сии (иден-	тификатор ПО	ния циф-
вание ПО	онное	тификаци-	(контрольная сум-	рового
вание ПО	наимено-	онный но-	ма исполняемого	иденти-
	вание ПО	мер) ПО	кода)	фикатора
				ПО
Встроенное				
програм-	PGM_EL	V1.01	A14D	CRC16
мное обес-	I OM_EL	V 1.01	A14D	CKC10
печение				
ПО ПК	ПГМ-МГ4	1.0.1	91f3f72726137f44	md5
	111 1V1-1V11 4	1.0.1	71edfc867f39d166	mus

3 Комплект поставки

	Наименование и условное обозначение	Количе-	Приме- чание
	Πρесс ΠΓΜ-500ΜΓ4 Α	,	
1	– собственно пресс	1	
	– пульт управления	1	
2	Руководство по эксплуатации	1	
	Паспорт	1	
3	Кабель USB	1	
4	USB-флеш-накопитель с программным	1	
4	обеспечением	1	
5	Кабель сетевой	1	
6	Вставка плавкая 5А, 250 В.	2	
7	Емкость с маслом, объемом 0,5л	1	
8	Упаковка	1	
9	Приспособление для испытания на изгиб	1	По
フ		1	спецзаказу

4 Гарантийные обязательства

- 4.1 Изготовитель гарантирует соответствие пресса требованиям нормативной технической документации при условии соблюдения потребителем правил эксплуатации и хранения, установленных в настоящем руководстве по эксплуатации.
 - 4.2 Срок гарантии 18 месяцев с даты продажи пресса.
- 4.3 В течение гарантийного срока безвозмездно устраняются выявленные дефекты.

Гарантийные обязательства не распространяются на прессы с нарушенным клеймом изготовителя, имеющие грубые механические повреждения.

Адреса разработчика-изготовителя ООО "СКБ Стройприбор":

Фактический: г. Челябинск, ул. Калинина, 11 «Г»,

Почтовый: 454084 г. Челябинск, а/я 8538

т/ф: в Челябинске (351) 277-8-555; в Москве: (495) 134-3-555

E-mail: <u>info@stroypribor.ru</u> <u>www.stroypribor.com</u>

5 Свидетельство о приемке

Севиден	CIDCIDO O	nphewite		
Nº c	оответству	еский малогабари ет требованиям с эксплуатации.		
Дата вып	уска «	>>	_20	Γ.
	,	тветственных за і	приемку)	- !
ПОВЕРКА 1	ВЫПОЛНЕН	IA		
знак повеј	рки	(поверитель, под	 цпись и Ф	 О.)
Дата пове	рки «	<u> </u>	_ 20	_ Γ.

Пресс гидравлический малогабаритный ПГМ - 500МГ4А

6 Сведения о периодической поверке

Запись о прове-	Дата и знак	Подпись	Расшифровка
денной поверке	поверки	поверителя	подписи

Приложение А

Градуировочные характеристики пресса ПГМ-500МГ4А № _____ при выпуске из производства

$\mathcal{N}_{\underline{0}}$	U, mV	Р, кН
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		

Дата: «»	201	20r		
	()		
(Полпись пица	ответственного за вы	пуск пресса)		